Sexe | Edat | Puntuació |
---|---|---|
fem | 16 | 81 |
fem | 16 | 67 |
fem | 15 | 70 |
fem | 15 | 74 |
fem | 15 | 77 |
fem | 15 | 77 |
fem | 15 | 67 |
fem | 15 | 81 |
fem | 17 | 81 |
masc | 16 | 58 |
masc | 15 | 76 |
masc | 15 | 73 |
masc | 16 | 71 |
masc | 15 | 62 |
masc | 16 | 72 |
masc | 15 | 79 |
Primer calculem la mitjana i la variabilitat dels nois i les noies. Per calcular la variabilitat emprem la desviació estàndard, que té el símbol: sigma minúscula, σ
La fòrmula de desviació estandard és:
$$ \sigma= \sum_{i=1}^n (x_i-x)^2$$The Student t-test is a statistical hypothesis test used to determine whether two sets of data are significantly different from each other. It is used when the data samples are small (less than 30), and the variances of the two samples are not known to be equal.
The formula for calculating the t-value for a two-sample t-test is:
$$t = \frac{\bar{X}_1 - \bar{X}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
where:
$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$
If the calculated t-value is greater than the critical t-value (which depends on the degrees of freedom and the level of significance), we reject the null hypothesis, which states that there is no significant difference between the two sets of data.
Unpaired t test results P value and statistical significance: The two-tailed P value equals 0.1660 By conventional criteria, this difference is considered to be not statistically significant. Confidence interval: The mean of Noies minus Nois equals 4.86 95% confidence interval of this difference: From -2.27 to 11.99 Intermediate values used in calculations: t = 1.4615 df = 14 standard error of difference = 3.323 Review your data: Group Mean SD SEM N Noies 75.00 5.81 1.94 9 Nois 70.14 7.52 2.84 7
Has de comparar amb la taula de t de student oficial amb els teus resultats de la t calculada
N1+N2-2 | p<0.05 | p<0.01 | p<0.005 | p<0.001 |
---|---|---|---|---|
1 | 6.314 | 31.821 | 63.657 | 318.309 |
2 | 2.920 | 6.965 | 9.925 | 22.327 |
3 | 2.353 | 4.541 | 5.841 | 10.215 |
4 | 2.132 | 3.747 | 4.604 | 7.173 |
5 | 2.015 | 3.365 | 4.032 | 5.893 |
6 | 1.943 | 3.143 | 3.707 | 5.208 |
7 | 1.895 | 2.998 | 3.499 | 4.785 |
8 | 1.860 | 2.896 | 3.355 | 4.501 |
9 | 1.833 | 2.821 | 3.250 | 4.297 |
10 | 1.812 | 2.764 | 3.169 | 4.144 |
11 | 1.796 | 2.718 | 3.106 | 4.025 |
12 | 1.782 | 2.681 | 3.055 | 3.930 |
13 | 1.771 | 2.650 | 3.012 | 3.852 |
14 | 1.761 | 2.624 | 2.977 | 3.787 |
15 | 1.753 | 2.602 | 2.947 | 3.733 |
16 | 1.746 | 2.583 | 2.921 | 3.686 |
17 | 1.740 | 2.567 | 2.898 | 3.646 |
18 | 1.734 | 2.552 | 2.878 | 3.610 |
19 | 1.729 | 2.539 | 2.861 | 3.579 |
20 | 1.725 | 2.528 | 2.845 | 3.552 |
21 | 1.721 | 2.518 | 2.831 | 3.527 |
22 | 1.717 | 2.508 | 2.819 | 3.505 |
23 | 1.714 | 2.500 | 2.807 | 3.485 |
24 | 1.711 | 2.492 | 2.797 | 3.467 |
25 | 1.708 | 2.485 | 2.787 | 3.450 |
26 | 1.706 | 2.479 | 2.779 | 3.435 |
27 | 1.703 | 2.473 | 2.771 | 3.421 |
28 | 1.701 | 2.467 | 2.763 | 3.408 |
29 | 1.699 | 2.462 | 2.756 | 3.396 |
30 | 1.697 | 2.457 | 2.750 | 3.385 |
40 | 1.684 | 2.423 | 2.704 | 3.307 |
50 | 1.676 | 2.407 | 2.678 | 3.261 |
60 | 1.671 | 2.390 | 2.660 | 3.232 |
70 | 1.667 | 2.381 | 2.639 | 3.211 |
80 | 1.664 | 2.374 | 2.639 | 3.195 |
100 | 1.660 | 2.364 | 2.626 | 3.174 |
1000 | 1.646 | 1.962 | 2.626 | 3.098 |
infinite | 1.645 | 2.326 | 2.576 | 3.090 |